Elevated Vitamin D Receptor Levels in Genetic Hypercalciuric Stone-Forming Rats Are Associated With Downregulation of Snail

نویسندگان

  • Shaochun Bai
  • Hongwei Wang
  • Jikun Shen
  • Randal Zhou
  • David A Bushinsky
  • Murray J Favus
چکیده

Patients with idiopathic hypercalciuria (IH) and genetic hypercalciuric stone-forming (GHS) rats, an animal model of IH, are both characterized by normal serum Ca, hypercalciuria, Ca nephrolithiasis, reduced renal Ca reabsorption, and increased bone resorption. Serum 1,25-dihydroxyvitamin D [1,25(OH)(2)D] levels are elevated or normal in IH and are normal in GHS rats. In GHS rats, vitamin D receptor (VDR) protein levels are elevated in intestinal, kidney, and bone cells, and in IH, peripheral blood monocyte VDR levels are high. The high VDR is thought to amplify the target-tissue actions of normal circulating 1,25(OH)(2)D levels to increase Ca transport. The aim of this study was to elucidate the molecular mechanisms whereby Snail may contribute to the high VDR levels in GHS rats. In the study, Snail gene expression and protein levels were lower in GHS rat tissues and inversely correlated with VDR gene expression and protein levels in intestine and kidney cells. In human kidney and colon cell lines, ChIP assays revealed endogenous Snail binding close to specific E-box sequences within the human VDR promoter region, whereas only one E-box specifically bound Snail in the rat promoter. Snail binding to rat VDR promoter E-box regions was reduced in GHS compared with normal control intestine and was accompanied by hyperacetylation of histone H(3). These results provide evidence that elevated VDR in GHS rats likely occurs because of derepression resulting from reduced Snail binding to the VDR promoter and hyperacetylation of histone H(3).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1,25(OH)2D3-enhanced hypercalciuria in genetic hypercalciuric stone-forming rats fed a low-calcium diet

Frick KK, Asplin JR, Krieger NS, Culbertson CD, Asplin DM, Bushinsky DA. 1,25(OH)2D3-enhanced hypercalciuria in genetic hypercalciuric stone-forming rats fed a low-calcium diet. Am J Physiol Renal Physiol 305: F1132–F1138, 2013. First published August 7, 2013; doi:10.1152/ajprenal.00296.2013.—The inbred genetic hypercalciuric stone-forming (GHS) rats exhibit many features of human idiopathic hy...

متن کامل

Regulation of renal calcium receptor gene expression by 1,25-dihydroxyvitamin D3 in genetic hypercalciuric stone-forming rats.

Hypercalciuria in inbred genetic hypercalciuric stone-forming (GHS) rats is due, in part, to a decrease in renal tubule Ca reabsorption. Activation of the renal Ca receptor (CaR) may decrease renal tubule Ca reabsorption and cause hypercalciuria through suppression of Ca-sensitive potassium channel activity. Because the rat renal CaR gene is regulated by extracellular calcium and 1,25-dihydroxy...

متن کامل

1,25(OH)₂D₃-enhanced hypercalciuria in genetic hypercalciuric stone-forming rats fed a low-calcium diet.

The inbred genetic hypercalciuric stone-forming (GHS) rats exhibit many features of human idiopathic hypercalciuria and have elevated levels of vitamin D receptors (VDR) in calcium (Ca)-transporting organs. On a normal-Ca diet, 1,25(OH)2D3 (1,25D) increases urine (U) Ca to a greater extent in GHS than in controls [Sprague-Dawley (SD)]. The additional UCa may result from an increase in intestina...

متن کامل

Increased biological response to 1,25(OH)(2)D(3) in genetic hypercalciuric stone-forming rats.

Genetic hypercalciuric stone-forming (GHS) rats, bred to maximize urine (U) calcium (Ca) excretion, have increased intestinal Ca absorption and bone Ca resorption and reduced renal Ca reabsorption, leading to increased UCa compared with the Sprague-Dawley (SD) rats. GHS rats have increased vitamin D receptors (VDR) at each of these sites, with normal levels of 1,25(OH)(2)D(3) (1,25D), indicatin...

متن کامل

Role of calcium in the regulation of bone morphogenetic protein 2, runt-related transcription factor 2 and Osterix in primary renal tubular epithelial cells by the vitamin D receptor.

The aim of the present study was to investigate the effect of 1,25(OH)2D3/vitamin D receptor (VDR) and calcium on the expression levels of osteogenic factors in primary renal tubular epithelial cells (RTECs) using genetic hypercalciuric rats. The basal levels of osteogenic factors were detected in Sprague Dawley and genetic hypercalciuric rats. The gene and protein levels of bone morphogenetic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2010